Calculate the maximum probability feature or metric for a gray-level co-occurrence matrix. For definition and application, see Lofstedt et al. (2019) doi:10.1371/journal.pone.0212110 .
max_prob(x, ...)
# S3 method for default
max_prob(x, ...)
# S3 method for matrix
max_prob(x, ...)
# S3 method for FitLandDF
max_prob(x, nlevels, ...)
gray-level co-occurrence matrix
additional parameters
desired number of discrete gray levels
maximum probability metric of x
## calculate maximum probability of arbitrary GLCM
# define arbitrary GLCM
x <- matrix(1:16, nrow = 4)
# normalize
n_x <- normalize_glcm(x)
# calculate maximum probability
max_prob(n_x)
#> [1] 0.1176471
## calculate maximum probability of arbitrary fitness landscape
# create fitness landscape using FitLandDF object
vals <- runif(64)
vals <- array(vals, dim = rep(4, 3))
my_landscape <- fitscape::FitLandDF(vals)
# calculate maximum probability of fitness landscape, assuming 2 discrete gray levels
max_prob(my_landscape, nlevels = 2)
#> [1] 0.2622951
## confirm value of maximum probability for fitness landscape
# extract normalized GLCM from fitness landscape
my_glcm <- get_comatrix(my_landscape, discrete = equal_discrete(2))
# calculate maximum probability of extracted GLCM
max_prob(my_glcm) # should match value of above max_prob function call
#> [1] 0.2622951